考研数学常考题型解题方法技巧归纳(数学二)(毛纲源) pdf 夸克云 tct umd 下载 2025 azw3 kindle

考研数学常考题型解题方法技巧归纳(数学二)(毛纲源)电子书下载地址
- 文件名
- [epub 下载] 考研数学常考题型解题方法技巧归纳(数学二)(毛纲源) epub格式电子书
- [azw3 下载] 考研数学常考题型解题方法技巧归纳(数学二)(毛纲源) azw3格式电子书
- [pdf 下载] 考研数学常考题型解题方法技巧归纳(数学二)(毛纲源) pdf格式电子书
- [txt 下载] 考研数学常考题型解题方法技巧归纳(数学二)(毛纲源) txt格式电子书
- [mobi 下载] 考研数学常考题型解题方法技巧归纳(数学二)(毛纲源) mobi格式电子书
- [word 下载] 考研数学常考题型解题方法技巧归纳(数学二)(毛纲源) word格式电子书
- [kindle 下载] 考研数学常考题型解题方法技巧归纳(数学二)(毛纲源) kindle格式电子书
内容简介:
暂无相关简介,正在全力查找中!
书籍目录:
p
>
�
�
�
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
b
r
/
>
b
r
/
>
1
.
1
�
�
�
�
�
�
(
2
)
b
r
/
>
b
r
/
>
1
.
1
.
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
2
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
1
.
1
.
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
2
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
1
.
1
.
2
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
2
)
b
r
/
>
b
r
/
>
1
.
1
.
2
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
3
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
1
.
2
.
1
�
�
�
�
�
�
(
�
�
�
�
�
�
)
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
3
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
1
.
2
.
2
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
6
)
b
r
/
>
b
r
/
>
1
.
1
.
3
�
�
�
�
�
�
(
�
�
�
�
�
�
)
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
7
)
b
r
/
>
b
r
/
>
1
.
1
.
4
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
8
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
1
.
4
.
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
9
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
1
.
4
.
2
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
9
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
1
.
4
.
3
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
0
)
b
r
/
>
b
r
/
>
1
.
2
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
1
)
b
r
/
>
b
r
/
>
1
.
2
.
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
1
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
1
.
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
&
l
d
q
u
o
;
&
e
p
s
i
l
o
n
;
�
�
�
N
&
r
d
q
u
o
;
&
l
d
q
u
o
;
&
e
p
s
i
l
o
n
;
�
�
�
&
d
e
l
t
a
;
&
r
d
q
u
o
;
&
l
d
q
u
o
;
&
e
p
s
i
l
o
n
;
�
�
�
X
&
r
d
q
u
o
;
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
1
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
1
.
2
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
1
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
1
.
3
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
3
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
1
.
4
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
4
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
1
.
5
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
5
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
1
.
6
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
6
)
b
r
/
>
b
r
/
>
1
.
2
.
2
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
6
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
2
.
1
�
�
�
0
0
�
�
�
�
�
�
&
i
n
f
i
n
;
&
i
n
f
i
n
;
�
�
�
�
�
�
�
�
�
(
1
6
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
2
.
2
�
�
�
0
&
m
i
d
d
o
t
;
&
i
n
f
i
n
;
�
�
�
�
�
�
�
�
�
(
2
1
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
2
.
3
�
�
�
&
i
n
f
i
n
;
-
&
i
n
f
i
n
;
�
�
�
�
�
�
�
�
�
(
2
2
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
2
.
4
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
0
0
�
�
�
�
�
�
&
i
n
f
i
n
;
0
�
�
�
�
�
�
1
&
i
n
f
i
n
;
�
�
�
)
�
�
�
�
�
�
(
2
2
)
b
r
/
>
b
r
/
>
1
.
2
.
3
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
2
7
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
3
.
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
n
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
2
7
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
3
.
2
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
3
1
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
3
.
3
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
3
2
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
3
.
4
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
3
2
)
b
r
/
>
b
r
/
>
1
.
2
.
4
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
3
5
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
4
.
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
3
5
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
4
.
2
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
3
7
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
4
.
3
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
3
7
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
4
.
4
�
�
�
�
�
�
l
n
f
(
x
)
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
l
i
m
x
&
r
a
r
r
;
�
�
�
f
(
x
)
=
1
(
3
8
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
4
.
5
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
3
9
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
4
.
6
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
3
9
)
b
r
/
>
b
r
/
>
1
.
2
.
5
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
x
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
l
i
m
n
&
r
a
r
r
;
&
i
n
f
i
n
;
&
p
h
i
;
(
n
,
x
)
(
4
0
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
5
.
1
�
�
�
l
i
m
n
&
r
a
r
r
;
&
i
n
f
i
n
;
&
p
h
i
;
(
n
,
x
)
,
�
�
�
�
�
�
&
p
h
i
;
(
n
,
x
)
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
F
(
x
)
g
(
n
)
(
4
0
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
5
.
2
�
�
�
l
i
m
n
&
r
a
r
r
;
&
i
n
f
i
n
;
&
p
h
i
;
(
n
,
x
)
,
�
�
�
�
�
�
&
p
h
i
;
(
n
,
x
)
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
g
(
n
)
F
(
x
)
(
4
1
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
5
.
3
�
�
�
l
i
m
t
&
r
a
r
r
;
t
0
&
p
h
i
;
(
t
,
x
)
�
�
�
�
�
�
�
�
�
&
p
h
i
;
(
t
,
x
)
�
�
�
�
�
�
�
�
�
�
�
�
F
(
x
)
g
(
t
)
�
�
�
�
�
�
g
(
t
)
F
(
x
)
�
�
�
(
4
1
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
5
.
4
�
�
�
l
i
m
n
&
r
a
r
r
;
&
i
n
f
i
n
;
&
p
h
i
;
(
n
,
x
)
=
l
i
m
n
&
r
a
r
r
;
&
i
n
f
i
n
;
F
(
n
,
x
)
g
(
x
,
n
)
�
�
�
l
i
m
t
&
r
a
r
r
;
t
0
&
p
h
i
;
(
t
,
x
)
=
l
i
m
t
&
r
a
r
r
;
t
0
F
(
t
,
x
)
g
(
x
,
t
)
(
4
2
)
b
r
/
>
b
r
/
>
1
.
2
.
6
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
4
2
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
6
.
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
4
2
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
6
.
2
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
�
�
�
)
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
4
9
)
b
r
/
>
b
r
/
>
1
.
2
.
7
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
5
0
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
7
.
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
5
1
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
7
.
2
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
5
3
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
7
.
3
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
5
4
)
b
r
/
>
b
r
/
>
1
.
2
.
8
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
5
5
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
8
.
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
5
5
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
8
.
2
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
5
9
)
b
r
/
>
b
r
/
>
1
.
2
.
9
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
6
1
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
9
.
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
6
2
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
9
.
2
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
6
4
)
b
r
/
>
b
r
/
>
1
.
3
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
6
7
)
b
r
/
>
b
r
/
>
1
.
3
.
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
6
7
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
1
.
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
6
7
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
1
.
2
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
7
1
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
1
.
3
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
7
3
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
1
.
4
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
7
5
)
b
r
/
>
b
r
/
>
1
.
3
.
2
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
7
5
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
2
.
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
7
5
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
2
.
2
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
7
6
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
2
.
3
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
7
7
)
b
r
/
>
b
r
/
>
1
.
3
.
3
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
7
8
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
3
.
1
�
�
�
�
�
�
�
�
�
f
(
x
)
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
7
8
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
3
.
2
�
�
�
�
�
�
f
(
x
)
=
�
�
�
&
p
h
i
;
(
x
)
�
�
�
g
(
x
)
�
�
�
�
�
�
�
�
�
�
�
�
(
7
8
)
b
r
/
>
b
r
/
>
1
.
3
.
4
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
8
0
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
4
.
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
8
0
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
4
.
2
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
8
1
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
4
.
3
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
8
2
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
4
.
4
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
8
4
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
4
.
5
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
8
6
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
4
.
6
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
8
7
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
4
.
7
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
8
7
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
4
.
8
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
9
0
)
b
r
/
>
b
r
/
>
1
.
3
.
5
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
9
2
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
5
.
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
9
2
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
5
.
2
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
9
3
)
b
r
/
>
b
r
/
>
1
.
3
.
6
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
9
5
)
b
r
/
>
b
r
/
>
1
.
3
.
7
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
9
6
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
7
.
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
f
&
p
r
i
m
e
;
(
&
x
i
;
)
=
0
�
�
�
f
&
P
r
i
m
e
;
(
&
x
i
;
)
=
0
(
9
7
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
7
.
2
�
�
�
�
�
�
�
�
�
�
�
�
&
x
i
;
&
i
s
i
n
;
(
a
,
b
)
�
�
�
�
�
�
c
f
&
p
r
i
m
e
;
(
&
x
i
;
)
=
d
g
&
p
r
i
m
e
;
(
&
x
i
;
)
�
�
�
�
�
�
�
�
�
c
,
d
�
�
�
�
�
�
�
�
�
(
9
8
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
7
.
3
�
�
�
�
�
�
�
�
�
�
�
�
&
x
i
;
&
i
s
i
n
;
(
a
,
b
)
�
�
�
�
�
�
g
(
&
x
i
;
)
f
&
p
r
i
m
e
;
(
&
x
i
;
)
h
(
&
x
i
;
)
f
(
&
x
i
;
)
=
Q
(
&
x
i
;
)
(
9
8
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
7
.
4
�
�
�
�
�
�
�
�
�
�
�
�
&
x
i
;
&
i
s
i
n
;
(
a
,
b
)
�
�
�
�
�
�
f
(
&
x
i
;
)
g
&
p
r
i
m
e
;
(
&
x
i
;
)
f
&
p
r
i
m
e
;
(
&
x
i
;
)
g
(
&
x
i
;
)
=
0
(
9
9
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
7
.
5
�
�
�
�
�
�
�
�
�
�
�
�
&
x
i
;
&
i
s
i
n
;
(
a
,
b
)
�
�
�
�
�
�
f
&
p
r
i
m
e
;
(
&
x
i
;
)
g
(
&
x
i
;
)
-
f
(
&
x
i
;
)
g
&
p
r
i
m
e
;
(
&
x
i
;
)
=
0
(
1
0
0
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
7
.
6
�
�
�
�
�
�
�
�
�
�
�
�
&
x
i
;
&
i
s
i
n
;
(
a
,
b
)
�
�
�
�
�
�
f
&
P
r
i
m
e
;
(
&
x
i
;
)
g
(
&
x
i
;
)
-
f
(
&
x
i
;
)
g
&
P
r
i
m
e
;
(
&
x
i
;
)
=
0
(
1
0
0
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
7
.
7
�
�
�
�
�
�
�
�
�
�
�
�
&
x
i
;
&
i
s
i
n
;
(
a
,
b
)
�
�
�
�
�
�
f
&
p
r
i
m
e
;
(
&
x
i
;
)
g
&
p
r
i
m
e
;
(
&
x
i
;
)
f
(
&
x
i
;
)
=
0
(
1
0
1
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
7
.
8
�
�
�
�
�
�
�
�
�
�
�
�
&
x
i
;
&
i
s
i
n
;
(
a
,
b
)
�
�
�
�
�
�
n
f
(
&
x
i
;
)
&
x
i
;
f
&
p
r
i
m
e
;
(
&
x
i
;
)
=
0
(
n
�
�
�
�
�
�
�
�
�
�
�
�
)
(
1
0
1
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
7
.
9
�
�
�
�
�
�
�
�
�
�
�
�
&
x
i
;
&
i
s
i
n
;
(
a
,
b
)
�
�
�
�
�
�
f
&
p
r
i
m
e
;
(
&
x
i
;
)
g
&
p
r
i
m
e
;
(
&
x
i
;
)
�
�
�
f
(
&
x
i
;
)
-
b
&
x
i
;
�
�
�
=
b
(
1
0
2
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
7
.
1
0
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
)
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
0
3
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
7
.
1
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
0
4
)
b
r
/
>
b
r
/
>
1
.
3
.
8
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
0
5
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
8
.
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
�
�
�
�
�
�
�
�
�
)
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
0
6
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
8
.
2
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
0
7
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
8
.
3
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
0
9
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
8
.
4
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
1
0
)
b
r
/
>
b
r
/
>
1
.
3
.
9
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
1
1
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
9
.
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
�
�
�
�
�
�
)
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
1
2
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
9
.
2
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
1
2
)
b
r
/
>
b
r
/
>
1
.
3
.
1
0
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
1
4
)
b
r
/
>
b
r
/
>
1
.
3
.
1
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
1
6
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
1
1
.
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
1
6
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
1
1
.
2
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
)
�
�
�
�
�
�
�
�
�
(
1
1
7
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
1
1
.
3
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
1
8
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
1
1
.
4
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
)
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
1
9
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
1
1
.
5
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
2
1
)
b
r
/
>
b
r
/
>
1
.
3
.
1
2
�
�
作者介绍:
暂无相关内容,正在全力查找中
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
在线阅读/听书/购买/PDF下载地址:
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
暂无其它内容!
网站评分
书籍多样性:3分
书籍信息完全性:9分
网站更新速度:8分
使用便利性:3分
书籍清晰度:5分
书籍格式兼容性:5分
是否包含广告:5分
加载速度:7分
安全性:4分
稳定性:6分
搜索功能:5分
下载便捷性:4分
下载点评
- 快捷(70+)
- 博大精深(204+)
- 购买多(478+)
- 书籍多(568+)
- 书籍完整(590+)
- 速度慢(281+)
- 图文清晰(653+)
- 格式多(587+)
下载评价
- 网友 辛***玮:
页面不错 整体风格喜欢
- 网友 相***儿:
你要的这里都能找到哦!!!
- 网友 龚***湄:
差评,居然要收费!!!
- 网友 濮***彤:
好棒啊!图书很全
- 网友 隗***杉:
挺好的,还好看!支持!快下载吧!
- 网友 权***波:
收费就是好,还可以多种搜索,实在不行直接留言,24小时没发到你邮箱自动退款的!
- 网友 陈***秋:
不错,图文清晰,无错版,可以入手。
- 网友 冷***洁:
不错,用着很方便
- 网友 郗***兰:
网站体验不错
- 网友 訾***雰:
下载速度很快,我选择的是epub格式
- 网友 饶***丽:
下载方式特简单,一直点就好了。
- 网友 沈***松:
挺好的,不错
- 网友 索***宸:
书的质量很好。资源多
- 网友 敖***菡:
是个好网站,很便捷
- 网友 石***烟:
还可以吧,毕竟也是要成本的,付费应该的,更何况下载速度还挺快的
- 网友 家***丝:
好6666666
喜欢"考研数学常考题型解题方法技巧归纳(数学二)(毛纲源)"的人也看了
深入治疗 pdf 夸克云 tct umd 下载 2025 azw3 kindle
2003 MBA联考英语大纲词汇 考点.记忆法.用法详解//2003年MBA联考辅导教材 pdf 夸克云 tct umd 下载 2025 azw3 kindle
2015考研英语历年真题超详解(权威剖析,资深一线名师深入解读;深入挖掘,由点及面多个角度分析;解析透彻,十年真题抽丝剥茧呈现;一语中的,直击命题点与答题规律) pdf 夸克云 tct umd 下载 2025 azw3 kindle
9787503872587 pdf 夸克云 tct umd 下载 2025 azw3 kindle
短程心理治疗实践 pdf 夸克云 tct umd 下载 2025 azw3 kindle
身边相似植物辨识 第 二版 植物根茎叶花果实等基础知识 常见相似的植物对比辨别方法 相似植物区别点和辨识特征图书籍种类多以售价为准介意者勿购hhhx pdf 夸克云 tct umd 下载 2025 azw3 kindle
明代科举史事编年考证 pdf 夸克云 tct umd 下载 2025 azw3 kindle
Berlin encounter柏林一瞥 pdf 夸克云 tct umd 下载 2025 azw3 kindle
彩票分析基础 N选R型彩票EXCel攻略 陈奕红,王飞 著 中国经济出版社【正版】 pdf 夸克云 tct umd 下载 2025 azw3 kindle
听课手账三年级下册语文数学人教版 万向思维秒懂课堂2024新版全2本 pdf 夸克云 tct umd 下载 2025 azw3 kindle
- 音乐(五线谱)七年级上册 pdf 夸克云 tct umd 下载 2025 azw3 kindle
- 2021年监理工程师考试用书:建设工程监理案例分析(土木建筑工程) pdf 夸克云 tct umd 下载 2025 azw3 kindle
- 说文解字系传 pdf 夸克云 tct umd 下载 2025 azw3 kindle
- 2024春 魔卡阅读四年级下册语文阅读理解训练 荣德基典中点同步练习册小学4年级下册课外阅读训练真题金题80篇教辅资料书籍 pdf 夸克云 tct umd 下载 2025 azw3 kindle
- GB/T 1038-2000塑料薄膜和薄片气体透过性试验方法 压差法 pdf 夸克云 tct umd 下载 2025 azw3 kindle
- 土木工程概论 凌卫宁,曲恒绪 主编 著作 pdf 夸克云 tct umd 下载 2025 azw3 kindle
- 电气绝缘系统 重复脉冲产生的电应力 第1部分:电老化评定的通用方法GB/T 22566.1-2008 pdf 夸克云 tct umd 下载 2025 azw3 kindle
- 教育概论 pdf 夸克云 tct umd 下载 2025 azw3 kindle
- 状元数学笔记计算高手五年级下册数学人教版2024新版 pdf 夸克云 tct umd 下载 2025 azw3 kindle
- 物理化学【新华集团自营】 pdf 夸克云 tct umd 下载 2025 azw3 kindle
书籍真实打分
故事情节:6分
人物塑造:5分
主题深度:3分
文字风格:7分
语言运用:6分
文笔流畅:5分
思想传递:3分
知识深度:7分
知识广度:9分
实用性:3分
章节划分:3分
结构布局:6分
新颖与独特:7分
情感共鸣:9分
引人入胜:8分
现实相关:6分
沉浸感:7分
事实准确性:5分
文化贡献:4分