Python机器学习(影印版) 东南大学出版社 pdf 夸克云 tct umd 下载 2025 azw3 kindle

Python机器学习(影印版) 东南大学出版社电子书下载地址
- 文件名
- [epub 下载] Python机器学习(影印版) 东南大学出版社 epub格式电子书
- [azw3 下载] Python机器学习(影印版) 东南大学出版社 azw3格式电子书
- [pdf 下载] Python机器学习(影印版) 东南大学出版社 pdf格式电子书
- [txt 下载] Python机器学习(影印版) 东南大学出版社 txt格式电子书
- [mobi 下载] Python机器学习(影印版) 东南大学出版社 mobi格式电子书
- [word 下载] Python机器学习(影印版) 东南大学出版社 word格式电子书
- [kindle 下载] Python机器学习(影印版) 东南大学出版社 kindle格式电子书
寄语:
新华书店正版,关注店铺成为会员可享店铺专属优惠,团购客户请咨询在线客服!
内容简介:
本书将带你进入预测分析的世界,通过演示告诉你为什么Python是世界很好的数据科学语言之一。如果你想询问更深入的数据问题,或是想增进、拓展机器学习系统的能力,这本实用的书籍可谓是无价之宝。书中涵盖了包括 scikit-learn、Theano和Keras在内的大量功能强大的Python库,操作指南以及从情感分析到神经网络的各色小技巧,很快你就能够解答你个人及组织所面对的那些最重要的问题。
书籍目录:
Preface
Chapter 1: Givin Computers the Ability to Learn from Data
Building intelligent machines to transform data into knowledge
The three different types of machine learning
Making predicti*** about the future with supervised learning
Classification for predicting class labels
Regression for predicting continuous outcomes
Solving in***ctive problems with reinforcement learning
Discovering hidden structures with unsupervised learning
Finding subgroups with clustering
Dimensionality reduction for data compression
An introduction to the basic terminology and notati***
A roadmap for building machine learning systems
Preprocessing-getting data into shape
Training and selecting a predictive model
Evaluating models and predicting unseen data instances
Using Python for machine learning
Installing Python packages
Summary
Chapter 2: Training Machine Learning Algorithms
for Classification
Artificial neur***-a brief glimpse into the early history
of machine learning
Implementing a perceptron learning algorithm in Python
Training a perceptron model on the Iris dataset
Adaptive linear neur*** and the convergence of learning
Minimizing cost functi*** with gradient descent
Implementing an Adaptive Linear Neuron in Python
Large scale machine learning and stochastic gradient descent
Summary
Chapter 3: A Tour of Machine Learning Classifiers Using
Scikit-learn
Choosing a classification algorithm
First steps with scikit-learn
Training a perceptron via scikit-learn
Modeling class probabilities via logistic regression
Logistic regression intuition and conditional probabilities
Learning the weights of the logistic cost function
Training a logistic regression model with scikit-learn
Tackling overfitting via regularization
Maximum margin classification with *** vector machines
Maximum margin intuition
Dealing with the nonlinearly separablecase using slack variables
Alternative implementati*** in scikit-learn
Solving nonlinear problems using a kernel ***M
Using the kernel trick to find separating hyperplanes in higher
dimensional space
Decision tree learning
Maximizing information gain-getting the most bang for the buck
Building a decision tree
Combining weak to strong learners via random forests
K-nearest neighbors-a lazy learning algorithm
Summary
Chapter 4: Building Good Training Sets-Data Preprocessing
Dealing with missing data
Eliminating samples or features with missing values
Imputing missing values
Understanding the scikit-learn estimator API
Handling categorical data
Mapping ordinal features
Encoding class labels
Performing one-*** encoding on nominal features
Partitioning a dataset in training and test sets
Bringing features onto the same scale
Selecting meaningful features
Sparse soluti*** with L1 regularization
Sequential feature selection algorithms
Assessing feature importance with random forests
Summary
Chapter 5: Com~ Data via Di~ Reduction
Unsupervised dimensionality reduction via principal
component ***ysis
Total and explained variance
Feature transformation
Principal component ***ysis in scikit-learn
Supervised data compression via linear discriminant ***ysis
Computing the scatter matrices
Selecting linear discriminants for the new feature subspace
Projecting samples onto the new feature space
LDA via scikit-learn
Using kernel principal component ***ysis for nonlinear mappings
Kernel functi*** and the kernel trick
Implementing a kernel principal component ***ysis in Python
Example 1-separating half-moon shapes
Example 2-separating concentric circles
Projecting new data points
Kernel principal component ***ysis in scikit-learn
Summary
Chapter 6: Learning Best Practices for Model Evaluation
and Hyperparameter Tuni~
Streamlining workflows with pipelines
Loading the Breast Cancer Wisc***in dataset
Combining transformers and estimators in a pipeline
Using k-fold cross-validation to assess model performance
The holdout method
K-fold cross-validation
Debugging algorithms with learning and validation curves
Diagnosing bias and variance problems with learning curves
Addressing overfitting and underfitting with validation curves
Fine-tuning machine learning models via grid search
Tuning hyperparameters via grid search
Algorithm selection with nested cross-validation
Looking at different performance evaluation metrics
Reading a confusion matrix
Optimizing the precision and recall of a classification model
Plotting a receiver operating characteristic
The scoring metrics for multiclass classification
Summary
Chapter 7: Combining Different Models for Ensemble Learning
Learning with ensembles
Implementing a *** majority vote classifier
Combining different algorithms for classification with majority vote
Evaluating and tuning the ensemble classifier
Bagging-building an ensemble of classifiers from
bootstrap samples
Leveraging weak learners via adaptive boosting
Summary
Chapter 8: Applying Machine Learning to Sentiment Analysis
Obtaining the IMDb movie review dataset
Introducing the bag-of-words model
Transforming words into feature vectors
Assessing word relevancy via term frequency-inverse
document frequency
Cleaning text data
Processing documents into tokens
Training a logistic regression model for document classification
Working with bigger data-online algorithms and
out-of-core learning
Summary
Chapter 9: Embedding a Machine Learning Model into
a Web Application
Serializing fitted scikit-learn estimators
Setting up a SQLite database for data storage
Developing a web application with Flask
Our first Flask web application
Form validation and rendering
Turning the movie classifier into a web application
Deploying the web application to a public sewer
Updating the movie review classifier
Summary
Chapter 10: Predicting Continuous Target Variables
with R_Re_gression Analysis
Introducing a *** linear regression model
Exploring the Housing Dataset
Visualizing the important characteristics of a dataset
Implementing an ordinary least squares linear regression model
Solving regression for regression parameters with gradient descent
Estimating the coefficient of a regression model via scikit-learn
Fitting a robust regression model using RANSAC
Evaluating the performance of linear regression models
Using regularized methods for regression
Turning a linear regression model into a curve-polynomial regression
Modeling nonlinear relati***hips in the Housing Dataset
Dealing with nonlinear relati***hips using random forests
Decision tree regression
Random forest regression
Summary
Chapter 11: Working with Unlabeled Data- Cluste~
Grouping objects by similarity using k-means
K-means++
Hard versus soft clustering
Using the elbow method to find the optimal number of clusters
Quantifying the quality of clustering via silhouette plots
Organizing clusters as a hierarchical tree
Performing hierarchical clustering on a distance matrix
Attaching dendrograms to a heat map
Applying agglomerative clustering via scikit-learn
Locating regi*** of high density via DBSCAN
Summary
Chapter 12: Training Artificial Neural Networks for Image Recognition
Modeling complex functi*** with artificial neural networks
Single-layer neural network recap
Introducing the multi-layer neural network architecture
Activating a neural network via forward propagation
Classifying handwritten digits
Obtaining the MNIST dataset
Implementing a multi-layer perceptron
Training an artificial neural network
Computing the logistic cost function
Training neural networks via backpropagation
Developing your intuition for backpropagation
Debugging neural networks with gradient checking
Convergence in neural networks
Other neural network architectures
Convolutional Neural Networks
Recurrent Neural Networks
A few last words about neural network implementation
Summary
Chapter 13: Parallelizing Neural Network Training with Theano
Building, compiling, and running expressi*** with Theano
What is Theano?
First steps with Theano
Configuring Theano
Working with array structures
Wrapping things up-a linear regression example
Choosing activation functi*** for feedforward neural networks
Logistic function recap
Estimating probabilities in multi-class classification via the
softmax function
Broadening the output spectrum by using a hyperbolic tangent
Training neural networks efficiently using Keras
Summary
Index
作者介绍:
Sebastian Raschka is a PhD student at Michigan State University, who develops new computational methods in the field of computational biology. He has been ranked as the number one most influential data scientist on GitHub by Analytics Vidhya. He has a yearlong experience in Python programming and he has conducted several seminars on the practical applicati*** of data science and machine learning. Talking and writing about data science, machine learning, and Python really motivated Sebastian to write this book in order to help people develop data-driven soluti*** without necessarily needing to have a machine learning background.
He has also actively contributed to open source projects and methods that he implemented, which are now successfully used in machine learning competiti***, such as Kaggle. In his free time, he works on models for sports predicti***, and if he is not in front of the computer, he enjoys playing sports.
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
在线阅读/听书/购买/PDF下载地址:
在线阅读地址:Python机器学习(影印版) 东南大学出版社在线阅读
在线听书地址:Python机器学习(影印版) 东南大学出版社在线收听
在线购买地址:Python机器学习(影印版) 东南大学出版社在线购买
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
书籍介绍
机器学习和预测分析正在改变商业和其他组织的运作模式。
由塞巴斯蒂安·拉什卡著的《Python机器学习(影印版)(英文版)》将带你进入预测分析的世界,通过演示告诉你为什么Python是世界顶尖的数据科学语言之一。如果你想询问更深入的数据问题,或是想增进、拓展机器学习系统的能力,这本实用的书籍可谓是无价之宝。书中涵盖了包括scikit-learn、
Theano和Keras在内的大量功能强大的Python库、操作指南以及从情感分析到神经网络的各色小技巧,很快你就能够解答你个人及组织所面对的那些最重要的问题。
网站评分
书籍多样性:9分
书籍信息完全性:7分
网站更新速度:4分
使用便利性:6分
书籍清晰度:7分
书籍格式兼容性:9分
是否包含广告:9分
加载速度:7分
安全性:8分
稳定性:5分
搜索功能:5分
下载便捷性:3分
下载点评
- 还行吧(146+)
- 体验满分(130+)
- 不亏(448+)
- 值得下载(670+)
- 书籍完整(399+)
- 赚了(104+)
- 种类多(128+)
- 内容齐全(479+)
下载评价
- 网友 蓬***之:
好棒good
- 网友 后***之:
强烈推荐!无论下载速度还是书籍内容都没话说 真的很良心!
- 网友 养***秋:
我是新来的考古学家
- 网友 常***翠:
哈哈哈哈哈哈
- 网友 隗***杉:
挺好的,还好看!支持!快下载吧!
- 网友 家***丝:
好6666666
- 网友 田***珊:
可以就是有些书搜不到
- 网友 通***蕊:
五颗星、五颗星,大赞还觉得不错!~~
- 网友 利***巧:
差评。这个是收费的
- 网友 晏***媛:
够人性化!
- 网友 扈***洁:
还不错啊,挺好
- 网友 菱***兰:
特好。有好多书
喜欢"Python机器学习(影印版) 东南大学出版社"的人也看了
柔道技巧 pdf 夸克云 tct umd 下载 2025 azw3 kindle
5G时代的智慧传媒生态 中国戏剧出版社 pdf 夸克云 tct umd 下载 2025 azw3 kindle
2019考研中医综合真题集:针灸学(第2版) pdf 夸克云 tct umd 下载 2025 azw3 kindle
中公版2013全真模拟预测试卷C类-江苏***考试(赠图书增值卡可享价值560元名师点题冲刺班+480元省考核心考点班等) pdf 夸克云 tct umd 下载 2025 azw3 kindle
绕着地球跑一圈. 第四辑,欧洲之旅. 德国 pdf 夸克云 tct umd 下载 2025 azw3 kindle
【正版保证团购优惠】趣说万事由来 哈尔滨出版社 pdf 夸克云 tct umd 下载 2025 azw3 kindle
人生的智慧 pdf 夸克云 tct umd 下载 2025 azw3 kindle
教师的专业素养(第3版) 上海教育出版社 pdf 夸克云 tct umd 下载 2025 azw3 kindle
2015年国家执业药师资格考试习题化考典:中药学专业知识(一) pdf 夸克云 tct umd 下载 2025 azw3 kindle
浪的景观 上海文艺出版社 pdf 夸克云 tct umd 下载 2025 azw3 kindle
- 53天天练 小学数学 五年级上册 BSD(北师大版)2018年秋 pdf 夸克云 tct umd 下载 2025 azw3 kindle
- 小提琴考级曲集第二册 pdf 夸克云 tct umd 下载 2025 azw3 kindle
- 江西历代进士全传(1-4册)不全 缺5和6册郑翔上海古籍出版社【现货实拍 可开发票 下单速发 正版图书】 pdf 夸克云 tct umd 下载 2025 azw3 kindle
- 词品 pdf 夸克云 tct umd 下载 2025 azw3 kindle
- 1000 Glass Beads 1000种玻璃串珠 I***N 9781579904586 pdf 夸克云 tct umd 下载 2025 azw3 kindle
- 晚安,月亮 pdf 夸克云 tct umd 下载 2025 azw3 kindle
- 9787122204325 pdf 夸克云 tct umd 下载 2025 azw3 kindle
- 食用菌高效栽培教材(科技兴农富民培训教材) pdf 夸克云 tct umd 下载 2025 azw3 kindle
- 9787503181429 pdf 夸克云 tct umd 下载 2025 azw3 kindle
- 台湾 pdf 夸克云 tct umd 下载 2025 azw3 kindle
书籍真实打分
故事情节:9分
人物塑造:9分
主题深度:5分
文字风格:3分
语言运用:5分
文笔流畅:5分
思想传递:5分
知识深度:9分
知识广度:8分
实用性:6分
章节划分:7分
结构布局:3分
新颖与独特:9分
情感共鸣:3分
引人入胜:3分
现实相关:7分
沉浸感:8分
事实准确性:3分
文化贡献:4分