人工智能原理与实践:基于Python语言和TensorFlow pdf 夸克云 tct umd 下载 2025 azw3 kindle

人工智能原理与实践:基于Python语言和TensorFlow电子书下载地址
- 文件名
- [epub 下载] 人工智能原理与实践:基于Python语言和TensorFlow epub格式电子书
- [azw3 下载] 人工智能原理与实践:基于Python语言和TensorFlow azw3格式电子书
- [pdf 下载] 人工智能原理与实践:基于Python语言和TensorFlow pdf格式电子书
- [txt 下载] 人工智能原理与实践:基于Python语言和TensorFlow txt格式电子书
- [mobi 下载] 人工智能原理与实践:基于Python语言和TensorFlow mobi格式电子书
- [word 下载] 人工智能原理与实践:基于Python语言和TensorFlow word格式电子书
- [kindle 下载] 人工智能原理与实践:基于Python语言和TensorFlow kindle格式电子书
内容简介:
本书是一本针对高校学生的绝佳TensorFlow学习教材。作者结合众多高质量的代码,生动讲解了TensorFlow的底层原理,并从实际应用问题入手,从实践的角度出发,通过具体的TensorFlow案例程序介绍常见的模型和应用解决办法。同时,在教材中还介绍了模型部署和编程过程中所用到的诸多开发技巧。是学习和掌握人工智能这个*、*火的IT领域的推荐图书。
书籍目录:
基 础 篇
第1章 绪论 1
1.1 人工智能简介 1
1.1.1 人工智能的概念 1
1.1.2 现代人工智能的兴起 5
1.1.3 人工智能的学术流派 5
1.2 人工智能的发展历史 8
1.2.1 孕育期(1956年之前) 8
1.2.2 形成期(1956~1969年) 9
1.2.3 发展期(1970年之后) 11
1.3 人工智能技术的研究内容与应用领域 13
1.3.1 神经网络 14
1.3.2 机器学习 15
1.3.3 模式识别 15
1.3.4 自然语言理解 16
1.3.5 专家系统 17
1.3.6 博弈 17
1.3.7 智能控制 18
1.3.8 其他 18
1.4 人工智能与TensorFlow 18
1.4.1 机器学习与深度学习 18
1.4.2 TensorFlow概念 20
1.4.3 TensorFlow的应用 23
第2章 Python基础应用 25
2.1 引言 25
2.2 Python的安装 25
2.3 数据类型与数据结构 29
2.4 数字 29
2.5 变量及其命名规则 29
2.6 语句和表达式 30
2.7 字符串 31
2.8 容器 32
2.8.1 列表 32
2.8.2 元组 35
2.8.3 字典 35
2.8.4 复制 36
2.9 函数 38
2.9.1 常用内置函数及高阶函数 38
2.9.2 用户自定义函数 42
2.10 常用库 43
2.10.1 时间库 43
2.10.2 科学计算库(NumPy) 47
2.10.3 可视化绘图库(Matplotlib) 54
2.10.4 锁与线程 58
2.10.5 多线程编程 59
第3章 TensorFlow基础 62
3.1 TensorFlow的架构 62
3.2 TensorFlow的开发环境搭建 66
3.3 数据流图简介 77
3.3.1 数据流图基础 77
3.3.2 节点的依赖关系 80
3.4 TensorFlow中定义数据流图 83
3.4.1 构建一个TensorFlow数据流图 83
3.4.2 张量思维 87
3.4.3 张量的形状 90
3.4.4 TensorFlow的Op 91
3.4.5 TensorFlow的Graph对象 93
3.4.6 TensorFlow的Session 94
3.4.7 输入与占位符 97
3.4.8 Variable对象 98
3.5 通过名称作用域组织数据流图 100
3.6 构建数据流图 105
3.7 运行数据流图 108
第4章 TensorFlow运作方式 114
4.1 数据的准备和下载 114
4.2 图表构建与推理 115
4.2.1 图表构建 115
4.2.2 推理 116
4.3 损失与训练 117
4.3.1 损失 117
4.3.2 训练 117
4.4 状态检查与可视化 118
4.4.1 状态检查 118
4.4.2 状态可视化 119
4.5 评估模型 120
4.6 评估图表的构建与输出 123
4.6.1 评估图表的构建 123
4.6.2 评估图表的输出 123
实 战 篇
第5章 MNIST机器学习 125
5.1 MNIST数据集简介 125
5.2 MNIST数据下载 127
5.2.1 数据的准备 129
5.2.2 数据重构 130
5.2.3 数据集对象 130
5.3 softmax回归模型简介 131
5.4 模型的训练与评估 132
5.5 TensorFlow模型基本步骤 135
5.6 构建softmax回归模型 135
第6章 卷积神经网络 138
6.1 卷积神经网络 138
6.2 卷积神经网络的模型架构 142
6.2.1 ImageNet-2010网络结构 142
6.2.2 DeepID网络结构 143
6.3 卷积运算 144
6.3.1 输入和卷积核 145
6.3.2 降维 145
6.3.3 填充 145
6.3.4 数据格式 145
*** 卷积常见层 146
***.1 卷积层 146
***.2 池化层 149
***.3 归一化 150
***.4 高级层 151
6.5 TensorFlow和图像 152
6.5.1 图像加载 152
6.5.2 图像格式 152
6.5.3 图像操作 152
6.5.4 颜色空间变换 153
6.6 模型训练 153
6.7 模型评估 154
6.8 多GPU的模型训练 154
第7章 字词的向量表示 155
7.1 WordEmbedding的基本概念和知识 156
7.2 Skip-Gram模型 158
7.2.1 数据集的准备 160
7.2.2 模型结构 161
7.2.3 处理噪声对比 162
7.2.4 模型训练 163
7.3 嵌套学习可视化与评估 164
7.4 优化实现 166
第8章 递归神经网络 168
8.1 递归神经网络的架构 169
8.2 PTB数据 170
8.3 模型及LSTM 170
8.3.1 LSTM的概念 172
8.3.2 LSTM的结构 173
8.3.3 LSTM的控制门 173
8.4 反向传播的截断 175
8.5 输入与损失函数 175
8.6 多个LSTM层堆叠 175
8.7 代码的编译与运行 176
第9章 Mandelbrot集合 177
9.1 库的导入 178
9.2 会话和变量初始化 179
9.3 定义并运行计算 179
第10章 偏微分方程模拟仿真 180
10.1 计算函数的定义 180
10.2 偏微分方程的定义 182
10.3 仿真 183
第11章 人脸识别 185
11.1 人脸识别概念 185
11.2 人脸识别的流程 188
11.2.1 人脸图像的采集 188
11.2.2 人脸图像的检测 189
11.2.3 人脸图像的预处理 189
11.2.4 人脸图像的特征提取 189
11.2.5 人脸图像的匹配与识别 190
11.2.6 活体鉴别 190
11.3 人脸识别种类 190
11.3.1 人脸检测 190
11.3.2 人脸关键点检测 191
11.3.3 人脸验证 194
11.4 人脸检测 194
11.4.1 LFW数据集 194
11.4.2 数据预处理与检测 195
11.5 性别和年龄识别 196
11.5.1 数据预处理 198
11.5.2 模型构建 198
11.5.3 模型训练 203
11.5.4 模型验证 204
作者介绍:
张明 兰州交通大学电信学院教师,韩国釜山广域市国立釜庆大学获工学博士学位。
何艳珊 兰州交通大学电信学院教师,主要研究方向:数据挖掘与数据库。
杜永文,硕士生导师,兰州交通大学物联网工程实验室主任。2005年11月到兰州交通大学任教至今;2005年1月毕业于西北工业大学,并获工学博士学位。
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
在线阅读/听书/购买/PDF下载地址:
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
编辑推荐
1、图书内容倡导并实践理论实践相结合的教学方式,鼓励并督促学生“学习和练习相结合,理论与 实践相结合”。针对图书所要求的理论与实践并重,两方面都要抓,两方面都要硬的要求,在实际教学过程中,除了基本的课堂授课以外,还会将知识点都设计并贯穿到实验中,当堂实验当堂讲解当堂掌握,让学生尽快掌握基本知识的应用。
2、将 Python语言内容加入课程中,使得学生能够学习了解到目前 IT领域内比较受欢迎的热门编程 语言。进一步扩宽学生的知识范围,并为以后的就业打下了扎实的理论和实践基础。
3、TensorFlow 使用 Python 来构建和执行 graphs、编写程序等工作。Python 作为一种流行的脚本语言,拥有免费、跨平台、简单易用、使用广泛等优点;将它应用在人工智能课程的实验项目上,可以明显减少花费在实验项目上的时间,用Python 语言所写的代码也更加易于阅读和维护;不需要学习庞大的AO 接口;能够快速简单的建立工作流;
4、本图书根据实际课程要求的培养目标,结合高校相关专业学生的实际情况,制定了具有鲜明自身特色的教学大纲,从知识的深度和广度两方面进一步针对目前流行的人工智能教材进行重新编写,使教材内容更加的通俗易懂,并具备向国内其他高校相关专业进行普及的特点。
5、在理论教学和实验教学的手段运用方面,将动画的形式融入到多媒体教学中,从而将计算机进行思维的过程和特点以及一些繁琐的算法推理,动态的展现给学生,进一步增强学生的学习兴趣,提高学生的学习积极性。
6.本课程是谷歌产学合作项目支持课程。
网站评分
书籍多样性:9分
书籍信息完全性:9分
网站更新速度:6分
使用便利性:7分
书籍清晰度:9分
书籍格式兼容性:5分
是否包含广告:9分
加载速度:6分
安全性:7分
稳定性:9分
搜索功能:7分
下载便捷性:4分
下载点评
- 中评多(160+)
- 体验差(608+)
- 好评多(87+)
- 实惠(450+)
- 在线转格式(424+)
- 快捷(133+)
下载评价
- 网友 国***舒:
中评,付点钱这里能找到就找到了,找不到别的地方也不一定能找到
- 网友 晏***媛:
够人性化!
- 网友 利***巧:
差评。这个是收费的
- 网友 温***欣:
可以可以可以
- 网友 宓***莉:
不仅速度快,而且内容无盗版痕迹。
- 网友 辛***玮:
页面不错 整体风格喜欢
- 网友 国***芳:
五星好评
- 网友 濮***彤:
好棒啊!图书很全
- 网友 石***烟:
还可以吧,毕竟也是要成本的,付费应该的,更何况下载速度还挺快的
- 网友 潘***丽:
这里能在线转化,直接选择一款就可以了,用他这个转很方便的
喜欢"人工智能原理与实践:基于Python语言和TensorFlow"的人也看了
义务教育道德与法治课程标准2022年版 道德与法治课标中华人民***国制定 北京师范大学 小学初中通用 2022 pdf 夸克云 tct umd 下载 2025 azw3 kindle
唐诗300首/宝宝的第一本国学启蒙书 pdf 夸克云 tct umd 下载 2025 azw3 kindle
【辽宁部分地区】2022新版人教版语文B版数学英语物理化学生物政治历史地理必修第一1册上册***9本高中必修一1套装课本教材教科书 pdf 夸克云 tct umd 下载 2025 azw3 kindle
今天如何做妻子/她与家系列 pdf 夸克云 tct umd 下载 2025 azw3 kindle
***10册汽车科普认知绘本汽车小童话大画书系列 消防车卡车出租车公交车 宝宝汽车系列绘本 儿童车迷睡前书籍幼儿交通工具车车认知大画书 pdf 夸克云 tct umd 下载 2025 azw3 kindle
水产养殖概论张欣第二版【正版书籍 无忧售后】 pdf 夸克云 tct umd 下载 2025 azw3 kindle
微观经济学(第九版) pdf 夸克云 tct umd 下载 2025 azw3 kindle
***心理学 (美)布彻(Butcher,J.N)等著 北京大学出版社【正版】 pdf 夸克云 tct umd 下载 2025 azw3 kindle
2019口腔执业医师强化训练4500题 pdf 夸克云 tct umd 下载 2025 azw3 kindle
桥牌双人赛攻防技术探秘 pdf 夸克云 tct umd 下载 2025 azw3 kindle
- (尾品汇)高效学习方法全集套装(状元经验版全三册):(畅销全国,超过10万名中学生从中受益,百所中学指定读物) pdf 夸克云 tct umd 下载 2025 azw3 kindle
- 2011最新版:选调生招录考试专用教材——行政职业能力测验(附光盘) pdf 夸克云 tct umd 下载 2025 azw3 kindle
- 山海经校诠 pdf 夸克云 tct umd 下载 2025 azw3 kindle
- 2015考研英语阅读理解精读100篇(基础版) pdf 夸克云 tct umd 下载 2025 azw3 kindle
- 国际注册内部审计师CIA考试新汇编600题(二)2014版 pdf 夸克云 tct umd 下载 2025 azw3 kindle
- 政治经济学 pdf 夸克云 tct umd 下载 2025 azw3 kindle
- 房屋建筑与装饰工程工程量清单编制(十二五职业教育建筑类专业规划教材) pdf 夸克云 tct umd 下载 2025 azw3 kindle
- 趣谈网络协议 pdf 夸克云 tct umd 下载 2025 azw3 kindle
- 明词话全编(全8册) pdf 夸克云 tct umd 下载 2025 azw3 kindle
- 以诈止诈 pdf 夸克云 tct umd 下载 2025 azw3 kindle
书籍真实打分
故事情节:6分
人物塑造:7分
主题深度:5分
文字风格:7分
语言运用:6分
文笔流畅:7分
思想传递:6分
知识深度:4分
知识广度:8分
实用性:8分
章节划分:6分
结构布局:3分
新颖与独特:4分
情感共鸣:5分
引人入胜:5分
现实相关:5分
沉浸感:7分
事实准确性:5分
文化贡献:5分